Package: ipflasso 1.1

ipflasso: Integrative Lasso with Penalty Factors

The core of the package is cvr2.ipflasso(), an extension of glmnet to be used when the (large) set of available predictors is partitioned into several modalities which potentially differ with respect to their information content in terms of prediction. For example, in biomedical applications patient outcome such as survival time or response to therapy may have to be predicted based on, say, mRNA data, miRNA data, methylation data, CNV data, clinical data, etc. The clinical predictors are on average often much more important for outcome prediction than the mRNA data. The ipflasso method takes this problem into account by using different penalty parameters for predictors from different modalities. The ratio between the different penalty parameters can be chosen from a set of optional candidates by cross-validation or alternatively generated from the input data.

Authors:Anne-Laure Boulesteix, Mathias Fuchs, Gerhard Schulze

ipflasso_1.1.tar.gz
ipflasso_1.1.zip(r-4.5)ipflasso_1.1.zip(r-4.4)ipflasso_1.1.zip(r-4.3)
ipflasso_1.1.tgz(r-4.4-any)ipflasso_1.1.tgz(r-4.3-any)
ipflasso_1.1.tar.gz(r-4.5-noble)ipflasso_1.1.tar.gz(r-4.4-noble)
ipflasso_1.1.tgz(r-4.4-emscripten)ipflasso_1.1.tgz(r-4.3-emscripten)
ipflasso.pdf |ipflasso.html
ipflasso/json (API)

# Install 'ipflasso' in R:
install.packages('ipflasso', repos = c('https://boulesteix.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.98 score 1 stars 32 scripts 172 downloads 3 mentions 6 exports 10 dependencies

Last updated 5 years agofrom:795193053c. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winOKNov 01 2024
R-4.5-linuxOKNov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:cvr.adaptive.ipflassocvr.glmnetcvr.ipflassocvr2.ipflassoipflasso.predictmy.auc

Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppEigenshapesurvival