Package: ipflasso 1.1
ipflasso: Integrative Lasso with Penalty Factors
The core of the package is cvr2.ipflasso(), an extension of glmnet to be used when the (large) set of available predictors is partitioned into several modalities which potentially differ with respect to their information content in terms of prediction. For example, in biomedical applications patient outcome such as survival time or response to therapy may have to be predicted based on, say, mRNA data, miRNA data, methylation data, CNV data, clinical data, etc. The clinical predictors are on average often much more important for outcome prediction than the mRNA data. The ipflasso method takes this problem into account by using different penalty parameters for predictors from different modalities. The ratio between the different penalty parameters can be chosen from a set of optional candidates by cross-validation or alternatively generated from the input data.
Authors:
ipflasso_1.1.tar.gz
ipflasso_1.1.zip(r-4.5)ipflasso_1.1.zip(r-4.4)ipflasso_1.1.zip(r-4.3)
ipflasso_1.1.tgz(r-4.4-any)ipflasso_1.1.tgz(r-4.3-any)
ipflasso_1.1.tar.gz(r-4.5-noble)ipflasso_1.1.tar.gz(r-4.4-noble)
ipflasso_1.1.tgz(r-4.4-emscripten)ipflasso_1.1.tgz(r-4.3-emscripten)
ipflasso.pdf |ipflasso.html✨
ipflasso/json (API)
# Install 'ipflasso' in R: |
install.packages('ipflasso', repos = c('https://boulesteix.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:795193053c. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win | OK | Nov 01 2024 |
R-4.5-linux | OK | Nov 01 2024 |
R-4.4-win | OK | Nov 01 2024 |
R-4.4-mac | OK | Nov 01 2024 |
R-4.3-win | OK | Nov 01 2024 |
R-4.3-mac | OK | Nov 01 2024 |
Exports:cvr.adaptive.ipflassocvr.glmnetcvr.ipflassocvr2.ipflassoipflasso.predictmy.auc
Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppEigenshapesurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Cross-validated integrative lasso with adaptive penalty factors | cvr.adaptive.ipflasso |
Repeating cv.glmnet | cvr.glmnet |
Cross-validated integrative lasso with fixed penalty factors | cvr.ipflasso |
Cross-validated integrative lasso with cross-validated penalty factors | cvr2.ipflasso |
Using an IPF-lasso model for prediction of new observations | ipflasso.predict |
Area under the curve (AUC) | my.auc |